New Approaches to Password Authenticated Key Exchange based on RSA

> Muxiang Zhang Verizon Communications, Inc. December 7, 2004

> > 1

Historical Background

- In 1992, Bellovin and Merritt invented EKE
 - Defeats off-line dictionary attack
 - Works well with Diffie-Hellman
 - Subtleties in RSA-based scheme
- In 1997, Lucks proposed OKE based on RSA
 - Broken in 2000
 - In Asiacrypt'00, MackKenzie et al. invented SNAPI
 - requires special RSA public key (n, e), prime e > n
- In ISC'02, Zhu et al. improved Bellovin-Merritt interactive protocol to validate RSA public key
 - Large communication overhead between entities
 - In ISC'03, Bao showed weakness of Zhu et al.'s protocol
 - In ISC'04, Zhang developed powerful attack on Zhu et al.'s protocol
 - In Crypto 04, Catalano et al. presented provably secure version of the interactive protocol

EKE based on Diffie-Hellman

EKE does not require digital certificate!

RSA-based EKE

How does B know (n, e) is a valid RSA public key?

e-Residue Attack

- 1) Eve selects a random password $\alpha \in D$
- 2) Eve computes $\lambda = H^*(\alpha, r_E, r_B, A, B)$
- 3) Eve tests if equation $x^e = \lambda^{-1}z \mod n$ has solution
- 4) If there is no solution, Eve excludes α from D and returns to step 1; otherwise, Eve returns to step 1.

SNAPI Protocol

Computationally prohibitive for primality test of $e > 2^{1024}$.

Interactive Validation Protocol

Large communication overhead.

Password Enabled Key Exchange Protocol (PEKEP)

- Alice (A) and Bob (B) only shares a password
- Alice can select both large and small primes for e
- Bob does not verify if $gcd(e, \phi(n)) = 1$
- Bob does not have to test primality for large e
- Low communication overhead; each flow involves at most one RSA message

Description of PEKEP

Security against e-Residue Attack

Security against e-Residue Attack (continue)

Theorem 1. Let $n = p_1^{a(1)} p_2^{a(2)} \dots p_r^{a(r)}$ be an odd integer. Let m be a non-negative integer and e an odd prime, such that e^{m+1} not divides $\varphi(p_i^{a(i)})$, $1 \le i \le r$. If z is e^m -th power residue of n, then for any $\lambda \in Z_n^*$, equation $(\lambda x^e)^{e^m} = z \mod n$ always has solution in Z_n^* .

In PEKEP, $m = \lfloor \log_e n \rfloor$, $e^{m+1} > n \ge p_i^{a(i)}$. The condition of Theorem 1 is satisfied, so that Eve can not exclude password π !

Computational Overhead

- Computation time for Alice is $O((\log_2 n)^3)$.
- When e is a small prime, e.g. e =13, computational load on Bob is dominated by m+1 RSA encryptions, with computation time $O((\log_2 n)^3)$.
- When e is large, Bob can replace e by smaller prime c

Alice (A)Bob (B)
$$r_A \in \{0,1\}^k$$
 r_A, n, e, A Select odd prime c
 $m = \lfloor \log_c n \rfloor$ $a \in Z^*_n, r_B \in \{0,1\}^k$
 $\alpha = H(w, r_A, r_B, A, B, n, c)$
If $gcd(\alpha, n) = 1, \lambda = \alpha$
 $else \lambda \in Z^*_n$ c, r_B, Z $z = (\lambda a^c)^{c^m} \mod n$

Computationally Efficient Key Exchange Protocol (CEKEP)

- Mitigates computational burden on Bob
- Adds two flows to PEKEP
- Alice and Bob shares a password, Bob selects a small number ϵ , e.g., $0 < \epsilon \le 2^{-80}$
- Number of RSA encryptions by Bob turns out to $m = \lceil \log_e e^{-1} \rceil < \lfloor \log_e n \rfloor$ (required in PEKEP).
- Computation time for Bob: $O((\log_e \varepsilon^{-1})(\log_2 n)^2)$

– When $\varepsilon = 2^{-80}$, two-three times faster than DH-EKE.

Description of CEKEP

Security against e-Residue Attack (for CEKEP)

Theorem 2. Let $n = p_1^{a(1)}p_2^{a(2)}...p_r^{a(r)}$ be an odd integer. Let m be a non-negative integer and e an odd prime. If there exists a prime power $p_i^{a(i)}$, such that

 e^m divides $\varphi(p_i^{a(i)})$,

Then for random integer $\gamma \in \mathbb{Z}_{n}^{*}$,

 $\Pr(\gamma = u^{e^m} \mod n) \le e^{-m} \le \varepsilon$

Formal Security Analysis

- Adversarial Model [BPR00]
 - Send
 - Execute
 - Reveal
 - Test
 - Oracle call
- Definition of security [GL03]
 - Execute(A, i, B, j) \Rightarrow partner (Π^{i}_{A}, Π^{j}_{B})
 - $\text{Adv} \le \text{Q}_{\text{send}}/|\text{D}| + \text{neg}(k, l)$

Assumptions and Results

- Random Oracles: H, H₁, H₂, H₃
- RSA Assumption

 $Adv_A^{rsa}(t) = Pr(x^{e}=c \mod n: (e, d, n) \leftarrow GE(1^{l}), c \in \{0, 1\}^{l}, x \leftarrow A(1^{l}, c, e, n))$

Theorem 3. For polynomial-time adversary A making Q_{send} queries of type *send*,

 $\begin{aligned} Adv_{A}^{PEKEP} &\leq Q_{send} / |D| + (Q_{execute} + 3Q_{send}) Adv^{rsa}(O(t)) \\ &+ O((Q_{execute} + 2Q_{send})Q_{oh} / 2^{k}) \end{aligned}$

Proof available in http://eprint.iacr.org/2004/033.

Conclusion

- Efficient and secure password-authenticated key exchange protocols can be constructed using RSA
- PEKEP and CEKEP do not restrict the size of RSA public key
- PEKEP and CEKEP do not require public parameters

 truly "password-only" protocols
- Provable security under RSA assumption and random oracle model